繼電保護
人氣:1920次發表時間:2013-08-01
研究電力系統故障和危及安全運行的異常工況,以探討其對策的反事故自動化措施。因在其發展過程中曾主要用有觸點的繼電器來保護電力系統及其元件(發電機、變壓器、輸電線路、母線等)使之免遭損害,所以沿稱繼電保護。
研究電力系統故障和危及安全運行的異常工況,以探討其對策的反事故自動化措施。因在其發展過程中曾主要用有觸點的繼電器來保護電力系統及其元件(發電機、變壓器、輸電線路等),使之免遭損害,所以也稱繼電保護?;救蝿帐牵寒旊娏ο到y發生故障或異常工況時,在可能實現的最短時間和最小區域內,自動將故障設備從系統中切除,或發出信號由值班人員消除異常工況根源,以減輕或避免設備的損壞和對相鄰地區供電的影響。
基本原理
繼電保護裝置必須具有正確區分被保護元件是處于正常運行狀態還是發生了故障,是保護區內故障還是區外故障的功能。保護裝置要實現這一功能,需要根據電力系統發生故障前后電氣物理量變化的特征為基礎來構成。
電力系統發生故障后,工頻電氣量變化的主要特征是:
(1) 電流增大。 短路時故障點與電源之間的電氣設備和輸電線路上的電流將由負荷電流增大至大大超過負荷電流。
(2) 電壓降低。當發生相間短路和接地短路故障時,系統各點的相間電壓或相電壓值下降,且越靠近短路點,電壓越低。
(3)
電流與電壓之間的相位角改變。正常運行時電流與電壓間的相位角是負荷的功率因數角,一般約為20°,三相短路時,電流與電壓之間的相位角是由線路的阻抗角
決定的,一般為60°~85°,而在保護反方向三相短路時,電流與電壓之間的相位角則是180°+(60°~85°)。
(4) 測量阻抗發生變化。測量阻抗即測量點(保護安裝處)電壓與電流之比值。正常運行時,測量阻抗為負荷阻抗;金屬性短路時,測量阻抗轉變為線路阻抗,故障后測量阻抗顯著減小,而阻抗角增大。
不對稱短路時,出現相序分量,如兩相及單相接地短路時,出現負序電流和負序電壓分量;單相接地時,出現負序和零序電流和電壓分量。這些分量在正常運行時是不出現的。
利用短路故障時電氣量的變化,便可構成各種原理的繼電保護。
此外,除了上述反應工頻電氣量的保護外,還有反應非工頻電氣量的保護。
裝置要求
繼電保護裝置為了完成它的任務,必須在技術上滿足選擇性、速動性、靈敏性和可靠性四個基本要求。對于作用于繼電器跳閘的繼電保護,應同時滿足四個基本要求,而對于作用于信號以及只反映不正常的運行情況的繼電保護裝置,這四個基本要求中有些要求可以降低。
1)選擇性
選擇性就是指當電力系統中的設備或線路發生短路時,其繼電保護僅將故障的設備或線路從電力系統中切除,當故障設備或線路的保護或斷路器拒動時,應由相鄰設備或線路的保護將故障切除。
2)速動性
速動性是指繼電保護裝置應能盡快地切除故障,以減少設備及用戶在大電流、低電壓運行的時間,降低設備的損壞程度,提高系統并列運行的穩定性。
一般必須快速切除的故障有:
(1) 使發電廠或重要用戶的母線電壓低于有效值(一般為0.7倍額定電壓)。
(2) 大容量的發電機、變壓器和電動機內部故障。
(3) 中、低壓線路導線截面過小,為避免過熱不允許延時切除的故障。
(4) 可能危及人身安全、對通信系統或鐵路信號造成強烈干擾的故障。
故障切除時間包括保護裝置和斷路器動作時間,一般快速保護的動作時間為0.04s~0.08s,最快的可達0.01s~0.04s,一般斷路器的跳閘時間為0.06s~0.15s,最快的可達0.02s~0.06s。
對于反應不正常運行情況的繼電保護裝置,一般不要求快速動作,而應按照選擇性的條件,帶延時地發出信號。
3)靈敏性
靈敏性是指電氣設備或線路在被保護范圍內發生短路故障或不正常運行情況時,保護裝置的反應能力。
能滿足靈敏性要求的繼電保護,在規定的范圍內故障時,不論短路點的位置和短路的類型如何,以及短路點是否有過渡電阻,都能正確反應動作,即要求不但在系統最大運行方式下三相短路時能可靠動作,而且在系統最小運行方式下經過較大的過渡電阻兩相或單相短路故障時也能可靠動作。
系統最大運行方式:被保護線路末端短路時,系統等效阻抗最小,通過保護裝置的短路電流為最大運行方式;
系統最小運行方式:在同樣短路故障情況下,系統等效阻抗為最大,通過保護裝置的短路電流為最小的運行方式。
保護裝置的靈敏性是用靈敏系數來衡量。
4)可靠性
可靠性包括安全性和信賴性,是對繼電保護最根本的要求。
安全性:要求繼電保護在不需要它動作時可靠不動作,即不發生誤動。
信賴性:要求繼電保護在規定的保護范圍內發生了應該動作的故障時可靠動作,即不拒動。
繼電保護的誤動作和拒動作都會給電力系統帶來嚴重危害。
即使對于相同的電力元件,隨著電網的發展,保護不誤動和不拒動對系統的影響也會發生變化。
以上四個基本要求是設計、配置和維護繼電保護的依據,又是分析評價繼電保護的基礎。這四個基本要求之間是相互聯系的,但往往又存在著矛盾。因此,在實際工作中,要根據電網的結構和用戶的性質,辯證地進行統一。
組成
一般情況而言,整套繼電保護裝置由測量元件、邏輯環節和執行輸出三部分組成 。
測量比較部分
測量比較部分是測量通過被保護的電氣元件的物理參量,并與給定的值進行比較,根據比較的結果,給出“是”“非”性質的一組邏輯信號,從而判斷保護裝置是否應該啟動。
邏輯部分
邏輯部分使保護裝置按一定的邏輯關系判定故障的類型和范圍,最后確定是應該使斷路器跳閘、發出信號或是否動作及是否延時等,并將對應的指令傳給執行輸出部分。
執行輸出部分
執行輸出部分根據邏輯傳過來的指令,最后完成保護裝置所承擔的任務。如在故障時動作于跳閘,不正常運行時發出信號,而在正常運行時不動作等。
工作回路
要完成繼電保護任務,除了需要繼電保護裝置外,必須通過可靠的繼電保護工作回路的正確工作,才能完成跳開故障元件的斷路器、對系統或電力元件的不正常運行發出警報、正常運行狀態不動作的任務。
繼電保護工作回路一般包括:將通過一次電力設備的電流、電壓線性地轉變為適合繼電保護等二次設備使用的電流、電壓,
并使一次設備與二次設備隔離的設備,如電流、電壓互感器及其與保護裝置連接的電纜等;斷路器跳閘線圈及與保護裝置出口間的連接電纜,指示保護動作情況的信
號設備;保護裝置及跳閘、信號回路設備的工作電源等。
分類
繼電保護可按以下4種方式分類。
①按被保護對象分類,有輸電線保護和主設備保護(如發電機、變壓器、母線、電抗器、電容器等保護)。
②按保護功能分類,有短路故障保護和異常運行保護。前者又可分為主保護、后備保護和輔助保護;后者又可分為過負荷保護、失磁保護、失步保護、低頻保護、非全相運行保護等。
③按保護裝置進行比較和運算處理的信號量分類,有模擬式保護和數字式保護。一切機電型、整流型、晶體管型和集成電路型(運算放大器)保護裝置,它們直接反映輸入信號的連續模擬量,均屬模擬式保護;采用微處理機和微型計算機的保護裝置,它們反應的是將模擬量經采樣和模/數轉換后的離散數字量,這是數字式保護。
④按保護動作原理分類,有過電流保護、低電壓保護、過電壓保護、功率方向保護、距離保護、差動保護、高頻(載波)保護等。
用途
①、當電網發生足以損壞設備或危及電網安全運行的故障時,使被保護設備快速脫離電網;
②、對電網的非正常運行及某些設備的非正常狀態能及時發出警報信號,以便迅速處理,使之恢復正常;
③、實現電力系統自動化和遠動化,以及工業生產的自動控制。
異常
發現繼電保護運行中有異常或存在缺陷時,除了加強監視外,對能引起誤動的保護退其出口壓板,然后聯系繼保人員處理。如有下列異常情況,均應及時退出:
1)母差保護。在發出“母差交流斷線”、“母差直流電壓消失”信號時;母差不平衡電流不為零時;無專用旁路母線的母聯開關串代線路操作及恢復倒閘操作中。
2)高頻保護。當直流電源消失時;定期通道試驗參數不符合要求時;裝置故障或通道異常信號發出無法復歸時;旁母代線路開關操作過程中。
3)距離保護。當采用的PT 退出運行或三相電壓回路斷線時;正常情況下助磁電流過大、過小時;負荷電流超過保護允許電流相應段時。
4)微機保護??偢婢療袅?,同時四個保護(高頻、距離、零序、綜重)之一告警燈亮時,退出相應保護;如果兩個CPU
故障,應退出該裝置所有保護;告警插件所有信號燈不亮,如果電源指示燈熄滅,說明直流消失,應退出出口壓板,在恢復直流電源后再投入;總告警燈及呼喚燈
亮,且打印顯示CPU×ERR 信號,如CPU 正常,說明保護與接口CPU 間通訊回路異常,退出CPU 巡檢開關處理,若信號無法復歸,說明CPU
有致命缺陷,應退出保護出口壓板并斷開巡檢開關處理。
5)瓦斯保護。在變壓器運行中加油、濾油或換硅膠時;潛油泵或冷油器(散熱器)放油檢修后投入時;需要打開呼吸系統的放氣門或放油塞子,或清理吸濕器時;有載調壓開關油路上有人工作時[1]。
系統保護
實
現繼電保護功能的設備稱為繼電保護裝置。雖然繼電保護有多種類型,其裝置也各不相同,但都包含著下列主要的環節:①信號的采集,即測量環節;②信號的分析
和處理環節;③判斷環節;④作用信號的輸出環節。以上所述僅限于組成電力系統的各元件(發電機、變壓器、母線、輸電線等)的繼電保護問題,而各國電力系統
的運行實踐已經證明,僅僅配置電力系統各元件的繼電保護裝置,還遠不能防止發生全電力系統長期大面積停電的嚴重事故。
為此必須從電力系統的全局和整體出發,研究故障元件被相應繼電保護裝置動作而切除后,系統將呈現何種工況,系統失去穩定時將出現何種特征,如何盡快恢復系
統的正常運行。這些正是系統保護所需研究的內容。系統保護的任務就是當大電力系統正常運行被破壞時,盡可能將其影響范圍限制到最小,負荷停電時間減小到最短。
大電力系統的安全穩定運行,首先必須建立在電力系統的合理結構布局上,這是系統規劃設計和運行調度工作中必須重視的問題。在此基礎上,系統保護的合理配置和正確整定,同時配合系統安全自動裝置(如解列裝置、自動減負荷、切水輪發電機組、快速壓汽輪發電機出力、自動重合閘、電氣制動等),達到電力系統安全運行的目的。
鑒于機、爐、電諸部分構成電力生產中不可分割的整體,任一部分的故障均將影響電力生產的安全,特別是大機組的不斷增加和系統規模的迅速擴大,使大電力系統與大機組的相互影響和協調問題成為電能安全生產的重大課題。電力系統繼電保護和安全自動裝置的配置方案應考慮機、爐設備的承受能力,機、爐設備的設計制造也應充分考慮電力系統安全經濟運行的實際需要。
為了巨型發電機組的安全,不僅應有完善的繼電保護裝置,還應積極研究和推廣故障預測技術,以期實現防患于未然,進一步提高大機組的安全可靠性。
發展歷程
繼電保護是隨著電力系統的發展而發展起來的。20世紀初隨著電力系統的發展,繼電器開始廣泛應用于電力系統的保護,這時期是繼電保護技術發展的開端。最早的繼電保護裝置是熔斷器。從20世紀50年代到90年代末,在40余年的時間里,繼電保護完成了發展的4個階段,即從電磁式保護裝置到晶體管式繼電保護裝置、到集成電路繼電保護裝置、再到微機繼電保護裝置。
隨著電子技術、計算機技術、通信技術的飛速發展,人工智能技術如人工神經網絡、遺傳算法、進化規模、模糊邏輯等相繼在繼電保護領域的研究應用,繼電保護技術向計算機化、網絡化、一體化、智能化方向發展。
19世紀的最后25年里,作為最早的繼電保護裝置熔斷器已開始應用。電力系統的發展,電網結構日
趨復雜,短路容量不斷增大,到20世紀初期產生了作用于斷路器的電磁型繼電保護裝置。雖然在1928年電子器件已開始被應用于保護裝置,但電子型靜態繼電
器的大量推廣和生產,只是在50年代晶體管和其他固態元器件迅速發展之后才得以實現。靜態繼電器有較高的靈敏度和動作速度、維護簡單、壽命長、體積小、消
耗功率小等優點,但較易受環境溫度和外界干擾的影響。1965年出現了應用計算機的數字式繼電保護。大規模集成電路技術的飛速發展,微處理機和微型計算機的普遍應用,極大地推動了數字式繼電保護技術的開發,目前微機數字保護正處于日新月異的研究試驗階段,并已有少量裝置正式運行。
研究現狀
隨
著電力系統容量日益增大,范圍越來越廣,僅設置系統各元件的繼電保護裝置,遠不能防止發生全電力系統長期大面積停電的嚴重事故。為此必須從電力系統全局出
發,研究故障元件被相應繼電保護裝置的動作切除后,系統將呈現何種工況,系統失去穩定時將出現何種特征,如何盡快恢復其正常運行等。系統保護的任務就是當
大電力系統正常運行被破壞時,盡可能將其影響范圍限制到最小,負荷停電時間減到最短。此外,機、爐、電任一部分的故障均影響電能的安全生產,特別是大機組
和大電力系統的相互影響和協調正成為電能安全生產的重大課題。因此,系統的繼電保護和安全自動裝置的配置方案應考慮機、爐等設備的承變能力,機、爐設備的
設計制造也應充分考慮電力系統安全經濟運行的實際需要。為了巨型發電機組的安全,不僅應有完善的繼電保護,還應研究、推廣故障預測技術。
發展趨勢
微
機保護經過近20年的應用、研究和發展,已經在電力系統中取得了巨大的成功,并積累了豐富的運行經驗,產生了顯著的經濟效益,大大提高了電力系統運行管理
水平。近年來,隨著計算機技術的飛速發展以及計算機在電力系統繼電保護領域中的普遍應用,新的控制原理和方法被不斷應用于計算機繼電保護中,以期取得更好
的效果,從而使微機繼電保護的研究向更高的層次發展,繼電保護技術未來趨勢是向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。[1]
1計算機化
隨著計算機硬件的迅猛發展,微機保護硬件也在不斷發展。電力系統對微機保護的要求不斷提高,除了保護的基本功能外,
還應具有大容量故障信息和數據的長期存放空間,快速的數據處理功能,強大的通信能力,與其它保護、控制裝置和調度聯網以共享全系統數據、信息和網絡資源的
能力,高級語言編程等。這就要求微機保護裝置具有相當于一臺pc機的功能。繼電保護裝置的微機化、計算機化是不可逆轉的發展趨勢。但對如何更好地滿足電力
系統要求,如何進一步提高繼電保護的可靠性,如何取得更大的經濟效益和社會效益,尚需進行具體深入的研究。
2網絡化
計算機網絡作為信息和數據通信工具已成為信息時代的技術支柱,它深刻影響著各個工業領域,也為各個工業領域提供了強
有力的通信手段。到目前為止,除了差動保護和縱聯保護外,所有繼電保護裝置都只能反應保護安裝處的電氣量。繼電保護的作用主要是切除故障元件,縮小事故影
響范圍。因繼電保護的作用不只限于切除故障元件和限制事故影響范圍,還要保證全系統的安全穩定運行。這就要求每個保護單元都能共享全系統的運行和故障信息
的數據,各個保護單元與重合閘裝置在分析這些信息和數據的基礎上協調動作,確保系統的安全穩定運行。顯然,實現這種系統保護的基本條件是將全系統各主要設
備的保護裝置用計算機網絡聯接起來,亦即實現微機保護裝置的網絡化。
3智能化
隨著智能電網的發展,分布式發電、交互式供電模式對繼電保護提出了更高要求,另一方面通信和信息技術的長足發展,數
字化技術及應用在各行各業的日益普及也為探索新的保護原理提供了條件,智能電網中可利用傳感器對發電、輸電、配電、供電等關鍵設備的運行狀況進行實時監
控,然后把獲得的數據通過網絡系統進行收集、整合,最后對數據進行分析。利用這些信息可對運行狀況進行監測,實現對保護功能和保護定值的遠程動態監控和修
正。另外,對保護裝置而言,保護功能除了需要本保護對象的運行信息外,還需要相關聯的其它設備的運行信息。一方面保證故障的準確實時識別,另一方面保證在
沒有或少量人工干預下,能夠快速隔離故障、自我恢復,避免大面積停電的發生。
保護、控制、測量、數據通信一體化在實現繼電保護的計算機化和網絡化的條件下,保護裝置實際上就是一臺高性能、多功
能的計算機,是整個電力系統計算機網絡上的一個智能終端。它可從網上獲取電力系統運行和故障的任何信息和數據,也可將它所獲得的被保護元件的任何信息和數
據傳送給網絡控制中心或任一終端。因此,每個微機保護裝置不但可完成繼電保護功能,而且在無故障正常運行隋況下還可完成測量、控制、數據通信功能,亦即實
現保護、控制、測量、數據通信-體化。
常用保護
傳統保護
1、電流保護。多用于配電網中,分為:電流速斷保護、限時電流速斷保護和定時限過電流保護。
2、距離保護。
3、差動保護。
新興保護
基于暫態的保護,如行波保護等。
繼電器廠家
國外知名品牌有 ABB、GE、SWEL、SEL、西門子、歐姆龍、阿海琺、施耐德、菲尼克斯、魏德米勒等,國內知名品牌有南瑞、南自、四方、許繼等。
保護設備
繼電保護設備是指對一次設備的工作進行監測、控制、調節、保護以及為運行、維護人員提供運行工況或生產指揮信號所需的低壓電氣設備。如熔斷器、控制開關、繼電器、控制電纜、儀表、信號設備、自動裝置等。
繼電保護設備主要包括:
(1) 儀表
(2) 控制和信號元件
(3) 繼電保護裝置
(4) 操作、信號電源回路
(5) 控制電纜及連接導線
(6) 發出音響的信號元件
(7) 接線端子排及熔斷器等
基本任務
電力系統繼電保護的基本任務是:
(1) 自動、迅速、有選擇性地將故障元件從電力系統中切除,使故障元件免于繼續遭到破壞,保證其他無故障部分迅速恢復正常運行。
(2)
反應電氣元件的不正常運行狀態,并根據運行維護的條件(如有無經常值班人員)而動作于信號,以便值班員及時處理,或由裝置自動進行調整,或將那些繼續運行
就會引起損壞或發展成為事故的電氣設備予以切除。此時一般不要求保護迅速動作,而是根據對電力系統及其元件的危害程度規定一定的延時,以免暫短地運行波動
造成不必要的動作和干擾而引起的誤動。
(3) 繼電保護裝置還可以與電力系統中的其他自動化裝置配合,在條件允許時,采取預定措施,縮短事故停電時間,盡快恢復供電,從而提高電力系統運行的可靠性。[2
上一篇:電力儀表
下一篇:電力系統繼電保護基礎知識